ConeBeamGeometry¶
- class odl.tomo.geometry.conebeam.ConeBeamGeometry(apart, dpart, src_radius, det_radius, det_curvature_radius=None, pitch=0, axis=(0, 0, 1), src_shift_func=None, det_shift_func=None, **kwargs)[source]¶
Bases:
DivergentBeamGeometry
,AxisOrientedGeometry
Cone beam geometry with circular/helical source curve.
The source moves along a spiral oriented along a fixed
axis
, with radiussrc_radius
in the azimuthal plane and a givenpitch
. The detector reference point is opposite to the source, i.e. in the point at distancesrc_rad + det_rad
on the line in the azimuthal plane through the source point andaxis
.The motion parameter is the 1d rotation angle parameterizing source and detector positions simultaneously.
In the standard configuration, the rotation axis is
(0, 0, 1)
, the initial source-to-detector vector is(0, 1, 0)
, and the initial detector axes are[(1, 0, 0), (0, 0, 1)]
.For details, check the online docs.
- Attributes:
angles
Discrete angles given in this geometry.
axis
Normalized axis of rotation, a 3d vector.
check_bounds
If
True
, methods computing vectors check input arguments.det_axes_init
Initial axes defining the detector orientation.
det_curvature_radius
Detector curve radius of this geometry.
det_grid
Sampling grid of
det_params
.det_params
Continuous detector parameter range, an
IntervalProd
.det_partition
Partition of the detector parameter set into subsets.
det_radius
Detector circle radius of this geometry.
det_shift_func
Detector shifts in the geometry.
detector
Detector representation of this geometry.
grid
Joined sampling grid for motion and detector.
implementation_cache
Dictionary acting as a cache for this geometry.
motion_grid
Sampling grid of
motion_params
.motion_params
Continuous motion parameter range, an
IntervalProd
.motion_partition
Partition of the motion parameter set into subsets.
ndim
Number of dimensions of the geometry.
offset_along_axis
Scalar offset along
axis
atangle=0
.params
Joined parameter set for motion and detector.
partition
Joined parameter set partition for motion and detector.
pitch
Constant vertical distance traversed in a full rotation.
src_radius
Source circle radius of this geometry.
src_shift_func
Source shifts in the geometry.
src_to_det_init
Initial state of the vector pointing from source to detector reference point.
translation
Shift of the origin of this geometry.
Methods
det_axes
(angle)Return the detector axes tuple at
angle
.det_point_position
(mparam, dparam)Return the detector point at
(mparam, dparam)
.det_refpoint
(angle)Return the detector reference point position at
angle
.det_to_src
(angle, dparam[, normalized])Vector or direction from a detector location to the source.
frommatrix
(apart, dpart, src_radius, ...[, ...])Create an instance of
ConeBeamGeometry
using a matrix.rotation_matrix
(angle)Return the rotation matrix to the system state at
angle
.src_position
(angle)Return the source position at
angle
.- __init__(apart, dpart, src_radius, det_radius, det_curvature_radius=None, pitch=0, axis=(0, 0, 1), src_shift_func=None, det_shift_func=None, **kwargs)[source]¶
Initialize a new instance.
- Parameters:
- apart1-dim.
RectPartition
Partition of the angle interval.
- dpart2-dim.
RectPartition
Partition of the detector parameter rectangle.
- src_radiusnonnegative float
Radius of the source circle.
- det_radiusnonnegative float
Radius of the detector circle. Must be nonzero if
src_radius
is zero.- det_curvature_radius2-tuple of nonnegative floats, optional
Radius or radii of the detector curvature. If
None
, a flat detector is used. If(r, None)
or(r, float('inf'))
, a cylindrical detector is used. If(r1, r2)
, a spherical detector is used.- pitchfloat, optional
Constant distance along
axis
that a point on the helix traverses when increasing the angle parameter by2 * pi
. The default casepitch=0
results in a circular cone beam geometry.- axis
array-like
, shape(3,)
, optional Vector defining the fixed rotation axis of this geometry.
- src_shift_funccallable, optional
Function with signature
src_shift_func(angle) -> shift
returning a source shift for a given angle. Each shift is interpreted as a vector[shift_d, shift_t, shift_r]
, where "d", "t" and "r" denote shifts along the following directions: detector-to-source, tangent to the rotation (projected on plane perpendicular to rotation axis), rotation axis.- det_shift_funccallable, optional
Function with signature
det_shift_func(angle) -> shift
returning a detector shift for a given angle. Each shift is interpreted as a vector[shift_d, shift_t, shift_r]
, where "d", "t" and "r" denote shifts along the following directions: source-to-detector, tangent to the rotation (projected on plane perpendicular to rotation axis), rotation axis.
- apart1-dim.
- Other Parameters:
- offset_along_axisfloat, optional
Scalar offset along the
axis
atangle=0
, i.e., the translation along the axis at angle 0 isoffset_along_axis * axis
. Default: 0.- src_to_det_init
array-like
, shape(3,)
, optional Initial state of the vector pointing from source to detector reference point. The zero vector is not allowed. The default depends on
axis
, see Notes.- det_axes_initlength-2-sequence of
array-like
's, optional Initial axes defining the detector orientation, provided as arrays with shape
(3,)
. Default: depends onaxis
, see Notes.- translation
array-like
, shape(3,)
, optional Global translation of the geometry. This is added last in any method that computes an absolute vector, e.g.,
det_refpoint
, and also shifts the axis of rotation. Default:(0, 0, 0)
- check_boundsbool, optional
If
True
, methods computing vectors check input arguments. Checks are vectorized and add only a small overhead. Default:True
Notes
In the default configuration, the rotation axis is
(0, 0, 1)
, the initial source-to-detector direction is(0, 1, 0)
, and the default detector axes are[(1, 0, 0), (0, 0, 1)]
. If a differentaxis
is provided, the new default initial position and the new default axes are the computed by rotating the original ones by a matrix that transforms(0, 0, 1)
to the new (normalized)axis
. This matrix is calculated with therotation_matrix_from_to
function. Expressed in code, we haveinit_rot = rotation_matrix_from_to((0, 0, 1), axis) src_to_det_init = init_rot.dot((0, 1, 0)) det_axes_init[0] = init_rot.dot((1, 0, 0)) det_axes_init[1] = init_rot.dot((0, 0, 1))
Examples
Initialization with default parameters and some (arbitrary) choices for pitch and radii:
>>> apart = odl.uniform_partition(0, 4 * np.pi, 10) >>> dpart = odl.uniform_partition([-1, -1], [1, 1], (20, 20)) >>> geom = ConeBeamGeometry( ... apart, dpart, src_radius=5, det_radius=10, pitch=2) >>> geom.src_position(0) array([ 0., -5., 0.]) >>> geom.det_refpoint(0) array([ 0., 10., 0.]) >>> np.allclose(geom.src_position(2 * np.pi), ... geom.src_position(0) + (0, 0, 2)) # z shift by pitch True
Checking the default orientation:
>>> geom.axis array([ 0., 0., 1.]) >>> geom.src_to_det_init array([ 0., 1., 0.]) >>> geom.det_axes_init array([[ 1., 0., 0.], [ 0., 0., 1.]])
Specifying curvature of the cylindrical detector:
>>> apart = odl.uniform_partition(0, 4 * np.pi, 10) >>> dpart = odl.uniform_partition( ... [-np.pi / 2, -1], [np.pi / 2, 1], (20, 20)) >>> geom = ConeBeamGeometry(apart, dpart, ... src_radius=5, det_radius=10, det_curvature_radius=(10, None)) >>> # (10*sin(pi/2), 10*cos(pi/2), 1) >>> np.round(geom.det_point_position(0, [ np.pi / 2, 1] ), 2) array([ 10., 0., 1.])
Specifying curvature of the spherical detector:
>>> apart = odl.uniform_partition(0, 4 * np.pi, 10) >>> dpart = odl.uniform_partition([-np.pi / 2, -np.pi / 4], ... [ np.pi / 2, np.pi / 4], (20, 20)) >>> geom = ConeBeamGeometry(apart, dpart, ... src_radius=5, det_radius=10, det_curvature_radius=(10, 10)) >>> # 10*( cos(pi/4), 0, sin(pi/4)) >>> np.round(geom.det_point_position(0, [ np.pi / 2, np.pi / 4] ), 2) array([ 7.07, 0. , 7.07])
Specifying an axis by default rotates the standard configuration to this position:
>>> e_x, e_y, e_z = np.eye(3) # standard unit vectors >>> geom = ConeBeamGeometry( ... apart, dpart, src_radius=5, det_radius=10, pitch=2, ... axis=(0, 1, 0)) >>> np.allclose(geom.axis, e_y) True >>> np.allclose(geom.src_to_det_init, -e_z) True >>> np.allclose(geom.det_axes_init, (e_x, e_y)) True >>> geom = ConeBeamGeometry( ... apart, dpart, src_radius=5, det_radius=10, pitch=2, ... axis=(1, 0, 0)) >>> np.allclose(geom.axis, e_x) True >>> np.allclose(geom.src_to_det_init, e_y) True >>> np.allclose(geom.det_axes_init, (-e_z, e_x)) True
The initial source-to-detector vector and the detector axes can also be set explicitly:
>>> geom = ConeBeamGeometry( ... apart, dpart, src_radius=5, det_radius=10, pitch=2, ... src_to_det_init=(-1, 0, 0), ... det_axes_init=((0, 1, 0), (0, 0, 1))) >>> np.allclose(geom.axis, e_z) True >>> np.allclose(geom.src_to_det_init, -e_x) True >>> np.allclose(geom.det_axes_init, (e_y, e_z)) True
Specifying a flying focal spot and detector offset:
>>> apart = odl.uniform_partition(0, 2 * np.pi, 4) >>> geom = ConeBeamGeometry( ... apart, dpart, ... src_radius=1, det_radius=5, ... src_shift_func=lambda angle: odl.tomo.flying_focal_spot( ... angle, apart=apart, shifts=[(0, 0.1, 0), (0, 0, 0.1)]), ... det_shift_func=lambda angle: [0.0, 0.05, 0.03]) >>> geom.src_shift_func(geom.angles) array([[ 0. , 0.1, 0. ], [ 0. , 0. , 0.1], [ 0. , 0.1, 0. ], [ 0. , 0. , 0.1]]) >>> geom.det_shift_func(geom.angles) [0.0, 0.05, 0.03]