ConeBeamGeometry.det_point_position¶
-
ConeBeamGeometry.
det_point_position
(self, mparam, dparam)¶ Return the detector point at
(mparam, dparam)
.The position is computed as follows:
pos = refpoint(mparam) + rotation_matrix(mparam).dot(detector.surface(dparam))
In other words, the motion parameter
mparam
is used to move the detector reference point, and the detector parameterdparam
defines an intrinsic shift that is added to the reference point.- Parameters
- mparam
array-like
or sequence Motion parameter(s) at which to evaluate. If
motion_params.ndim >= 2
, a sequence of that length must be provided.- dparam
array-like
or sequence Detector parameter(s) at which to evaluate. If
det_params.ndim >= 2
, a sequence of that length must be provided.
- mparam
- Returns
- pos
numpy.ndarray
Vector(s) pointing from the origin to the detector point. The shape of the returned array is obtained from the (broadcast) shapes of
mparam
anddparam
, and broadcasting is supported within both parameters and between them. The precise definition of the shape isbroadcast(bcast_mparam, bcast_dparam).shape + (ndim,)
, wherebcast_mparam
ismparam
ifmotion_params
is 1D,broadcast(*mparam)
otherwise,
and
bcast_dparam
defined analogously.
- pos
Examples
The method works with single parameter values, in which case a single vector is returned:
>>> apart = odl.uniform_partition(0, np.pi, 10) >>> dpart = odl.uniform_partition(-1, 1, 20) >>> geom = odl.tomo.Parallel2dGeometry(apart, dpart) >>> geom.det_point_position(0, 0) # (0, 1) + 0 * (1, 0) array([ 0., 1.]) >>> geom.det_point_position(0, 1) # (0, 1) + 1 * (1, 0) array([ 1., 1.]) >>> pt = geom.det_point_position(np.pi / 2, 0) # (-1, 0) + 0 * (0, 1) >>> np.allclose(pt, [-1, 0]) True >>> pt = geom.det_point_position(np.pi / 2, 1) # (-1, 0) + 1 * (0, 1) >>> np.allclose(pt, [-1, 1]) True
Both variables support vectorized calls, i.e., stacks of parameters can be provided. The order of axes in the output (left of the
ndim
axis for the vector dimension) corresponds to the order of arguments:>>> geom.det_point_position(0, [-1, 0, 0.5, 1]) array([[-1. , 1. ], [ 0. , 1. ], [ 0.5, 1. ], [ 1. , 1. ]]) >>> pts = geom.det_point_position([0, np.pi / 2, np.pi], 0) >>> np.allclose(pts, [[0, 1], ... [-1, 0], ... [0, -1]]) True >>> # Providing 3 pairs of parameters, resulting in 3 vectors >>> pts = geom.det_point_position([0, np.pi / 2, np.pi], ... [-1, 0, 1]) >>> pts[0] # Corresponds to angle = 0, dparam = -1 array([-1., 1.]) >>> pts.shape (3, 2) >>> # Pairs of parameters arranged in arrays of same size >>> geom.det_point_position(np.zeros((4, 5)), np.zeros((4, 5))).shape (4, 5, 2) >>> # "Outer product" type evaluation using broadcasting >>> geom.det_point_position(np.zeros((4, 1)), np.zeros((1, 5))).shape (4, 5, 2)
More complicated 3D geometry with 2 angle variables and 2 detector variables:
>>> apart = odl.uniform_partition([0, 0], [np.pi, 2 * np.pi], ... (10, 20)) >>> dpart = odl.uniform_partition([-1, -1], [1, 1], (20, 20)) >>> geom = odl.tomo.Parallel3dEulerGeometry(apart, dpart) >>> # 2 values for each variable, resulting in 2 vectors >>> angles = ([0, np.pi / 2], [0, np.pi]) >>> dparams = ([-1, 0], [-1, 0]) >>> pts = geom.det_point_position(angles, dparams) >>> pts[0] # Corresponds to angle = (0, 0), dparam = (-1, -1) array([-1., 1., -1.]) >>> pts.shape (2, 3) >>> # 4 x 5 parameters for both >>> angles = dparams = (np.zeros((4, 5)), np.zeros((4, 5))) >>> geom.det_point_position(angles, dparams).shape (4, 5, 3) >>> # Broadcasting angles to shape (4, 5, 1, 1) >>> angles = (np.zeros((4, 1, 1, 1)), np.zeros((1, 5, 1, 1))) >>> # Broadcasting dparams to shape (1, 1, 6, 7) >>> dparams = (np.zeros((1, 1, 6, 1)), np.zeros((1, 1, 1, 7))) >>> # Total broadcast parameter shape is (4, 5, 6, 7) >>> geom.det_point_position(angles, dparams).shape (4, 5, 6, 7, 3)