FunctionalQuotient¶
- class odl.solvers.functional.functional.FunctionalQuotient(*args, **kwargs)[source]¶
Bases:
FunctionalQuotient
p(x) = f(x) / g(x)of two functionalsfandg.- Attributes:
adjointAdjoint of this operator (abstract).
convex_conjConvex conjugate functional of the functional.
dividendThe dividend of the quotient.
divisorThe divisor of the quotient.
domainSet of objects on which this operator can be evaluated.
grad_lipschitzLipschitz constant for the gradient of the functional.
gradientGradient operator of the functional.
inverseReturn the operator inverse.
is_functionalTrueif this operator's range is aField.is_linearTrueif this operator is linear.proximalProximal factory of the functional.
rangeSet in which the result of an evaluation of this operator lies.
Methods
__call__(x[, out])Return
self(x[, out, **kwargs]).bregman(point, subgrad)Return the Bregman distance functional.
derivative(point)Return the derivative operator in the given point.
norm([estimate])Return the operator norm of this operator.
translated(shift)Return a translation of the functional.
- __init__(dividend, divisor)[source]¶
Initialize a new instance.
- Parameters:
- dividend, divisor
Functional Functionals in the quotient. Need to have matching domains.
- dividend, divisor
Examples
Construct the functional || . ||_2 / 5
>>> space = odl.rn(2) >>> func1 = odl.solvers.L2Norm(space) >>> func2 = odl.solvers.ConstantFunctional(space, 5) >>> prod = odl.solvers.FunctionalQuotient(func1, func2) >>> prod([3, 4]) # expect sqrt(3**2 + 4**2) / 5 = 1 1.0