KullbackLeiblerConvexConj¶
- class odl.solvers.functional.default_functionals.KullbackLeiblerConvexConj(*args, **kwargs)[source]¶
Bases:
FunctionalThe convex conjugate of Kullback-Leibler divergence functional.
See also
KullbackLeiblerconvex conjugate functional
Notes
The functional
with prior
is given by:
- Attributes:
adjointAdjoint of this operator (abstract).
convex_conjThe convex conjugate functional of the conjugate KL-functional.
domainSet of objects on which this operator can be evaluated.
grad_lipschitzLipschitz constant for the gradient of the functional.
gradientGradient operator of the functional.
inverseReturn the operator inverse.
is_functionalTrueif this operator's range is aField.is_linearTrueif this operator is linear.priorThe prior in convex conjugate Kullback-Leibler functional.
proximalReturn the
proximal factoryof the functional.rangeSet in which the result of an evaluation of this operator lies.
Methods
__call__(x[, out])Return
self(x[, out, **kwargs]).bregman(point, subgrad)Return the Bregman distance functional.
derivative(point)Return the derivative operator in the given point.
norm([estimate])Return the operator norm of this operator.
translated(shift)Return a translation of the functional.
- __init__(space, prior=None)[source]¶
Initialize a new instance.
- Parameters:
- space
DiscretizedSpaceorTensorSpace Domain of the functional.
- prior
spaceelement-like, optional Depending on the context, the prior, target or data distribution. It is assumed to be nonnegative. Default: if None it is take as the one-element.
- space