InfimalConvolution¶
- class odl.solvers.functional.functional.InfimalConvolution(*args, **kwargs)[source]¶
Bases:
FunctionalFunctional representing
h(x) = inf_y f(x-y) + g(y).- Attributes:
adjointAdjoint of this operator (abstract).
convex_conjConvex conjugate functional of the functional.
domainSet of objects on which this operator can be evaluated.
grad_lipschitzLipschitz constant for the gradient of the functional.
gradientGradient operator of the functional.
inverseReturn the operator inverse.
is_functionalTrueif this operator's range is aField.is_linearTrueif this operator is linear.leftLeft functional.
proximalProximal factory of the functional.
rangeSet in which the result of an evaluation of this operator lies.
rightRight functional.
Methods
__call__(x[, out])Return
self(x[, out, **kwargs]).bregman(point, subgrad)Return the Bregman distance functional.
derivative(point)Return the derivative operator in the given point.
norm([estimate])Return the operator norm of this operator.
translated(shift)Return a translation of the functional.
- __init__(left, right)[source]¶
Initialize a new instance.
- Parameters:
- left
Functional Function corresponding to
f.- right
Functional Function corresponding to
g.
- left
Examples
>>> space = odl.rn(3) >>> l1 = odl.solvers.L1Norm(space) >>> l2 = odl.solvers.L2Norm(space) >>> f = odl.solvers.InfimalConvolution(l1.convex_conj, l2.convex_conj) >>> x = f.domain.one() >>> f.convex_conj(x) - (l1(x) + l2(x)) 0.0