# FunctionalRightVectorMult¶

class `odl.solvers.functional.functional.``FunctionalRightVectorMult`(*args, **kwargs)[source]

Expression type for the functional right vector multiplication.

Given a functional `func` and a vector `y` in the domain of `func`, this corresponds to the functional

`(func * y)(x) == func(y * x)`.

Attributes
`adjoint`

Adjoint of this operator.

`convex_conj`

Convex conjugate functional of the functional.

`domain`

Set of objects on which this operator can be evaluated.

functional
`grad_lipschitz`

Lipschitz constant for the gradient of the functional.

`gradient`

Gradient operator of the functional.

`inverse`

Inverse of this operator.

`is_functional`

`True` if this operator’s range is a `Field`.

`is_linear`

`True` if this operator is linear.

`operator`

The operator part of this multiplication.

`proximal`

Proximal factory of the functional.

`range`

Set in which the result of an evaluation of this operator lies.

`vector`

The fixed element to multiply with.

Methods

 `_call`(self, x[, out]) Implement `self(x[, out])`. `bregman`(self, point, subgrad) Return the Bregman distance functional. `derivative`(self, point) Return the derivative operator in the given point. `norm`(self[, estimate]) Return the operator norm of this operator. `translated`(self, shift) Return a translation of the functional.
`__init__`(self, func, vector)[source]

Initialize a new instance.

Parameters
func`Functional`

The domain of `func` must be a `vector.space`.

vector`domain` element

The vector to multiply by.