Huber

class odl.solvers.functional.default_functionals.Huber(*args, **kwargs)[source]

Bases: Functional

The Huber functional.

Notes

The Huber norm is the integral over a smoothed norm. In detail, it is given by

F(x) = \int_\Omega f_{\gamma}(||x(y)||_2) dy

where ||\cdot||_2 denotes the Euclidean norm for vector-valued functions which reduces to the absolute value for scalar-valued functions. The function f with smoothing \gamma is given by

f_{\gamma}(t) =
\begin{cases}
    \frac{1}{2 \gamma} t^2 & \text{if } |t| \leq \gamma \\
    |t| - \frac{\gamma}{2} & \text{else}
\end{cases}.

Attributes:
adjoint

Adjoint of this operator (abstract).

convex_conj

The convex conjugate

domain

Set of objects on which this operator can be evaluated.

gamma

The smoothing parameter of the Huber norm functional.

grad_lipschitz

Lipschitz constant for the gradient of the functional.

gradient

Gradient operator of the functional.

inverse

Return the operator inverse.

is_functional

True if this operator's range is a Field.

is_linear

True if this operator is linear.

proximal

Return the proximal factory of the functional.

range

Set in which the result of an evaluation of this operator lies.

Methods

__call__(x[, out])

Return self(x[, out, **kwargs]).

bregman(point, subgrad)

Return the Bregman distance functional.

derivative(point)

Return the derivative operator in the given point.

norm([estimate])

Return the operator norm of this operator.

translated(shift)

Return a translation of the functional.

__init__(space, gamma)[source]

Initialize a new instance.

Parameters:
spaceTensorSpace

Domain of the functional.

gammafloat

Smoothing parameter of the Huber functional. If gamma = 0, the functional is non-smooth and corresponds to the usual L1 norm. For gamma > 0, it has a 1/gamma-Lipschitz gradient so that its convex conjugate is gamma-strongly convex.

Examples

Example of initializing the Huber functional:

>>> space = odl.uniform_discr(0, 1, 14)
>>> gamma = 0.1
>>> huber_norm = odl.solvers.Huber(space, gamma=0.1)

Check that if all elements are > gamma we get the L1-norm up to a constant:

>>> x = 2 * gamma * space.one()
>>> tol = 1e-5
>>> constant = gamma / 2 * space.one().inner(space.one())
>>> f = odl.solvers.L1Norm(space) - constant
>>> abs(huber_norm(x) - f(x)) < tol
True

Check that if all elements are < gamma we get the squared L2-norm times the weight 1/(2*gamma):

>>> x = gamma / 2 * space.one()
>>> f = 1 / (2 * gamma) * odl.solvers.L2NormSquared(space)
>>> abs(huber_norm(x) - f(x)) < tol
True

Compare Huber- and L1-norm for vanishing smoothing gamma=0:

>>> x = odl.phantom.white_noise(space)
>>> huber_norm = odl.solvers.Huber(space, gamma=0)
>>> l1_norm = odl.solvers.L1Norm(space)
>>> abs(huber_norm(x) - l1_norm(x)) < tol
True

Redo previous example for a product space in two dimensions:

>>> domain = odl.uniform_discr([0, 0], [1, 1], [5, 5])
>>> space = odl.ProductSpace(domain, 2)
>>> x = odl.phantom.white_noise(space)
>>> huber_norm = odl.solvers.Huber(space, gamma=0)
>>> l1_norm = odl.solvers.GroupL1Norm(space, 2)
>>> abs(huber_norm(x) - l1_norm(x)) < tol
True