ProductSpaceOperator.derivative¶
- ProductSpaceOperator.derivative(x)[source]¶
Derivative of the product space operator.
- Parameters:
- x
domain
element The point to take the derivative in
- x
- Returns:
- adjointlinear`ProductSpaceOperator`
The derivative
Examples
>>> r3 = odl.rn(3) >>> pspace = odl.ProductSpace(r3, r3) >>> I = odl.IdentityOperator(r3) >>> x = pspace.element([[1, 2, 3], [4, 5, 6]])
Example with linear operator (derivative is itself)
>>> prod_op = ProductSpaceOperator([[0, I], [0, 0]], ... domain=pspace, range=pspace) >>> prod_op(x) ProductSpace(rn(3), 2).element([ [ 4., 5., 6.], [ 0., 0., 0.] ]) >>> prod_op.derivative(x)(x) ProductSpace(rn(3), 2).element([ [ 4., 5., 6.], [ 0., 0., 0.] ])
Example with affine operator
>>> residual_op = I - r3.element([1, 1, 1]) >>> op = ProductSpaceOperator([[0, residual_op], [0, 0]], ... domain=pspace, range=pspace)
Calling operator gives offset by [1, 1, 1]
>>> op(x) ProductSpace(rn(3), 2).element([ [ 3., 4., 5.], [ 0., 0., 0.] ])
Derivative of affine operator does not have this offset
>>> op.derivative(x)(x) ProductSpace(rn(3), 2).element([ [ 4., 5., 6.], [ 0., 0., 0.] ])