ComponentProjectionAdjoint¶
- class odl.operator.pspace_ops.ComponentProjectionAdjoint(*args, **kwargs)[source]¶
Bases:
Operator
Adjoint operator to
ComponentProjection
.As a special case of the adjoint of a
ProductSpaceOperator
, this operator is given as a column vector of identity operators and zero operators, with the identities placed in the positions defined byComponentProjectionAdjoint.index
.In weighted product spaces, the adjoint needs to take the weightings into account. This is currently not supported.
- Attributes:
adjoint
Adjoint of this operator.
domain
Set of objects on which this operator can be evaluated.
index
Index of the subspace.
inverse
Return the operator inverse.
is_functional
True
if this operator's range is aField
.is_linear
True
if this operator is linear.range
Set in which the result of an evaluation of this operator lies.
Methods
__call__
(x[, out])Return
self(x[, out, **kwargs])
.derivative
(point)Return the operator derivative at
point
.norm
([estimate])Return the operator norm of this operator.
- __init__(space, index)[source]¶
Initialize a new instance
- Parameters:
- space
ProductSpace
Space to project to.
- indexint, slice, or list
Indexes to project from.
- space
Examples
>>> r1 = odl.rn(1) >>> r2 = odl.rn(2) >>> r3 = odl.rn(3) >>> pspace = odl.ProductSpace(r1, r2, r3) >>> x = pspace.element([[1], ... [2, 3], ... [4, 5, 6]])
Projection on the 0-th component:
>>> proj_adj = odl.ComponentProjectionAdjoint(pspace, 0) >>> proj_adj(x[0]) ProductSpace(rn(1), rn(2), rn(3)).element([ [ 1.], [ 0., 0.], [ 0., 0., 0.] ])
Projection on a sub-space corresponding to indices 0 and 2:
>>> proj_adj = odl.ComponentProjectionAdjoint(pspace, [0, 2]) >>> proj_adj(x[[0, 2]]) ProductSpace(rn(1), rn(2), rn(3)).element([ [ 1.], [ 0., 0.], [ 4., 5., 6.] ])