DiscretizedSpaceElement

class odl.discr.discr_space.DiscretizedSpaceElement(space, tensor)[source]

Bases: odl.space.base_tensors.Tensor

Representation of a DiscretizedSpace element.

Attributes
T

This element’s transpose, i.e.

cell_sides

Side lengths of a cell in an underlying uniform partition.

cell_volume

Cell volume of an underlying regular grid.

data

Data container of self, depends on space.impl.

dtype

Type of data storage.

imag

Imaginary part of this element.

impl

Name of the implementation back-end of this tensor.

itemsize

Size in bytes of one tensor entry.

nbytes

Total number of bytes in memory occupied by this tensor.

ndim

Number of axes (=dimensions) of this tensor.

real

Real part of this element.

shape

Number of elements per axis.

size

Size of data storage.

space

Space to which this element belongs.

tensor

Structure for data storage.

ufuncs

Access to Numpy style universal functions.

Methods

asarray(self[, out])

Extract the data of this array as a numpy array.

assign(self, other)

Assign the values of other to self.

astype(self, dtype)

Return a copy of this element with new dtype.

conj(self[, out])

Complex conjugate of this element.

copy(self)

Create an identical (deep) copy of this element.

dist(self, other)

Return the distance of self to other.

divide(self, other[, out])

Return out = self / other.

inner(self, other)

Return the inner product of self and other.

lincomb(self, a, x1[, b, x2])

Implement self[:] = a * x1 + b * x2.

multiply(self, other[, out])

Return out = self * other.

norm(self)

Return the norm of this element.

set_zero(self)

Set this element to zero.

show(self[, title, method, coords, indices, …])

Display the function graphically.

__init__(self, space, tensor)[source]

Initialize a new instance.