FanBeamGeometry.src_position¶
- FanBeamGeometry.src_position(angle)[source]¶
Return the source position at
angle
.For an angle
phi
, the source position is given bysrc(phi) = translation + rot_matrix(phi) * (-src_rad * src_to_det_init) + source_shift(phi)
where
src_to_det_init
is the initial unit vector pointing from source to detector andsource_shift(phi) = rot_matrix(phi) * (shift[0] * (-src_to_det_init) + shift[1] * tangent)
where
tangent
is a vector tangent to the trajectorywhere
src_to_det_init
is the initial unit vector pointing from source to detector.- Parameters:
- anglefloat or
array-like
Angle(s) in radians describing the counter-clockwise rotation of source and detector.
- anglefloat or
- Returns:
- pos
numpy.ndarray
Vector(s) pointing from the origin to the source. If
angle
is a single parameter, the returned array has shape(2,)
, otherwiseangle.shape + (2,)
.
- pos
See also
Examples
With default arguments, the source starts at
src_rad * (-e_y)
and rotates tosrc_rad * e_x
at 90 degrees:>>> apart = odl.uniform_partition(0, 2 * np.pi, 10) >>> dpart = odl.uniform_partition(-1, 1, 20) >>> geom = FanBeamGeometry(apart, dpart, src_radius=2, det_radius=5) >>> geom.src_position(0) array([ 0., -2.]) >>> np.allclose(geom.src_position(np.pi / 2), [2, 0]) True
The method is vectorized, i.e., it can be called with multiple angles at once:
>>> points = geom.src_position([0, np.pi / 2]) >>> np.allclose(points[0], [0, -2]) True >>> np.allclose(points[1], [2, 0]) True
Specifying flying focal spot:
>>> apart = odl.uniform_partition(0, 2 * np.pi, 4) >>> geom = FanBeamGeometry( ... apart, dpart, ... src_radius=1, det_radius=5, ... src_shift_func=lambda angle: odl.tomo.flying_focal_spot( ... angle, ... apart=apart, ... shifts=[(0.1, 0), (0, 0.1)]), ... src_to_det_init=(-0.71, 0.71)) >>> geom.angles array([ 0.78539816, 2.35619449, 3.92699082, 5.49778714]) >>> np.round(geom.src_position(geom.angles), 2) array([[ 1.1, -0. ], [-0.1, 1. ], [-1.1, 0. ], [ 0.1, -1. ]])