IndicatorNonnegativity

class odl.solvers.functional.default_functionals.IndicatorNonnegativity(*args, **kwargs)[source]

Bases: IndicatorBox

Indicator on the set of non-negative numbers.

Notes

The nonnegativity indicator F is defined as:

F(x) = \begin{cases}
    0 & \text{if } 0 \leq x \text{ everywhere}, \\
    \infty & \text{else}
    \end{cases}

Attributes:
adjoint

Adjoint of this operator (abstract).

convex_conj

Convex conjugate functional of the functional.

domain

Set of objects on which this operator can be evaluated.

grad_lipschitz

Lipschitz constant for the gradient of the functional.

gradient

Gradient operator of the functional.

inverse

Return the operator inverse.

is_functional

True if this operator's range is a Field.

is_linear

True if this operator is linear.

proximal

Return the proximal factory of the functional.

range

Set in which the result of an evaluation of this operator lies.

Methods

__call__(x[, out])

Return self(x[, out, **kwargs]).

bregman(point, subgrad)

Return the Bregman distance functional.

derivative(point)

Return the derivative operator in the given point.

norm([estimate])

Return the operator norm of this operator.

translated(shift)

Return a translation of the functional.

__init__(space)[source]

Initialize an instance.

Parameters:
spaceLinearSpace

Domain of the functional.

Examples

>>> space = odl.rn(3)
>>> func = IndicatorNonnegativity(space)
>>> func([0, 1, 2])  # all points positive
0
>>> func([0, 1, -3])  # one point negative
inf