Divergence¶
-
class
odl.discr.diff_ops.
Divergence
(*args, **kwargs)[source]¶ Bases:
odl.operator.tensor_ops.PointwiseTensorFieldOperator
Divergence operator for
DiscretizedSpace
spaces.Calls helper function
finite_diff
for each component of the input product space vector. For the adjoint of theDivergence
operator to match the negativeGradient
operator implicit zero is assumed.- Attributes
adjoint
Adjoint of this operator.
base_space
Base space
X
of this operator’s domain and range.domain
Set of objects on which this operator can be evaluated.
inverse
Return the operator inverse.
is_functional
True
if this operator’s range is aField
.is_linear
True
if this operator is linear.range
Set in which the result of an evaluation of this operator lies.
Methods
_call
(self, x[, out])Calculate the divergence of
x
.derivative
(self[, point])Return the derivative operator.
norm
(self[, estimate])Return the operator norm of this operator.
-
__init__
(self, domain=None, range=None, method='forward', pad_mode='constant', pad_const=0)[source]¶ Initialize a new instance.
Zero padding is assumed for the adjoint of the
Divergence
operator to match the negativeGradient
operator.- Parameters
- domainpower space of
DiscretizedSpace
, optional Space of elements which the operator acts on. This is required if
range
is not given.- range
DiscretizedSpace
, optional Space of elements to which the operator maps. This is required if
domain
is not given.- method{‘forward’, ‘backward’, ‘central’}, optional
Finite difference method to be used
- pad_modestring, optional
The padding mode to use outside the domain.
'constant'
: Fill withpad_const
.'symmetric'
: Reflect at the boundaries, not doubling the'periodic'
: Fill in values from the other side, keeping the order.'order0'
: Extend constantly with the outmost values (ensures continuity).'order1'
: Extend with constant slope (ensures continuity of the first derivative). This requires at least 2 values along each axis.'order2'
: Extend with second order accuracy (ensures continuity of the second derivative). This requires at least 3 values along each axis.- pad_constfloat, optional
For
pad_mode == 'constant'
,f
assumespad_const
for indices outside the domain off
- domainpower space of
Examples
Initialize a Divergence opeator:
>>> ran = odl.uniform_discr([0, 0], [3, 5], (3, 5)) >>> dom = odl.ProductSpace(ran, ran.ndim) # 2-dimensional >>> div = Divergence(dom) >>> div.range == ran True >>> div2 = Divergence(range=ran) >>> div2.domain == dom True >>> div3 = Divergence(domain=dom, range=ran) >>> div3.domain == dom True >>> div3.range == ran True
Call the operator:
>>> data = np.array([[0., 1., 2., 3., 4.], ... [1., 2., 3., 4., 5.], ... [2., 3., 4., 5., 6.]]) >>> f = div.domain.element([data, data]) >>> div_f = div(f) >>> print(div_f) [[ 2., 2., 2., 2., -3.], [ 2., 2., 2., 2., -4.], [ -1., -2., -3., -4., -12.]]
Verify adjoint:
>>> g = div.range.element(data ** 2) >>> adj_div_g = div.adjoint(g) >>> g.inner(div_f) / f.inner(adj_div_g) 1.0