NumpyTensorSpace.element¶
- NumpyTensorSpace.element(inp=None, data_ptr=None, order=None)[source]¶
Create a new element.
- Parameters:
- inp
array-like
, optional Input used to initialize the new element.
If
inp
isNone
, an empty element is created with no guarantee of its state (memory allocation only). The new element will useorder
as storage order if provided, otherwisedefault_order
.Otherwise, a copy is avoided whenever possible. This requires correct
shape
anddtype
, and iforder
is provided, also contiguousness in that ordering. If any of these conditions is not met, a copy is made.- data_ptrint, optional
Pointer to the start memory address of a contiguous Numpy array or an equivalent raw container with the same total number of bytes. For this option,
order
must be either'C'
or'F'
. The option is also mutually exclusive withinp
.- order{None, 'C', 'F'}, optional
Storage order of the returned element. For
'C'
and'F'
, contiguous memory in the respective ordering is enforced. The defaultNone
enforces no contiguousness.
- inp
- Returns:
- element
NumpyTensor
The new element, created from
inp
or from scratch.
- element
Examples
Without arguments, an uninitialized element is created. With an array-like input, the element can be initialized:
>>> space = odl.rn(3) >>> empty = space.element() >>> empty.shape (3,) >>> empty.space rn(3) >>> x = space.element([1, 2, 3]) >>> x rn(3).element([ 1., 2., 3.])
If the input already is a
numpy.ndarray
of correctdtype
, it will merely be wrapped, i.e., both array and space element access the same memory, such that mutations will affect both:>>> arr = np.array([1, 2, 3], dtype=float) >>> elem = odl.rn(3).element(arr) >>> elem[0] = 0 >>> elem rn(3).element([ 0., 2., 3.]) >>> arr array([ 0., 2., 3.])
Elements can also be constructed from a data pointer, resulting again in shared memory:
>>> int_space = odl.tensor_space((2, 3), dtype=int) >>> arr = np.array([[1, 2, 3], ... [4, 5, 6]], dtype=int, order='F') >>> ptr = arr.ctypes.data >>> y = int_space.element(data_ptr=ptr, order='F') >>> y tensor_space((2, 3), dtype=int).element( [[1, 2, 3], [4, 5, 6]] ) >>> y[0, 1] = -1 >>> arr array([[ 1, -1, 3], [ 4, 5, 6]])