linear_interpolator¶
-
odl.discr.discr_utils.
linear_interpolator
(f, coord_vecs)[source]¶ Return the linear interpolator for discrete function values.
- Parameters
- fnumpy.ndarray
Function values that should be interpolated.
- coord_vecssequence of numpy.ndarray
Coordinate vectors of the rectangular grid on which interpolation should be based. They must be sorted in ascending order. Usually they are obtained as
grid.coord_vectors
from aRectGrid
.
- Returns
- interpolatorfunction
Python function that will interpolate the given values when called with a point or multiple points (vectorized).
Examples
We interpolate a 1d function. If called with a single point, the interpolator returns a single value, and with multiple points at once, an array of values is returned:
>>> part = odl.uniform_partition(0, 2, 5) >>> part.coord_vectors # grid points (array([ 0.2, 0.6, 1. , 1.4, 1.8]),) >>> f = [1.0, 2.0, 3.0, 4.0, 5.0] >>> interpolator = linear_interpolator(f, part.coord_vectors) >>> interpolator(0.3) # 0.75 * 1 + 0.25 * 2 = 1.25 1.25 >>> # At 1.9, the value is interpolated between the last value 5.0 and >>> # 0.0. The extra interpolation node is placed at the same distance >>> # as the second-to-last, i.e., at 2.2. Hence, the interpolated value >>> # is 0.75 * 5.0 + 0.25 * 0.0 = 3.75. >>> interpolator([0.6, 1.3, 1.9]) array([ 2. , 3.75, 3.75])
In 2 dimensions, we can either use a (transposed) list of points or a meshgrid:
>>> part = odl.uniform_partition([0, 0], [1, 5], shape=(2, 4)) >>> part.coord_vectors # grid points (array([ 0.25, 0.75]), array([ 0.625, 1.875, 3.125, 4.375])) >>> f = np.array([[1, 2, 3, 4], ... [5, 6, 7, 8]], ... dtype=float) >>> interpolator = linear_interpolator(f, part.coord_vectors) >>> interpolator([1, 1]) # single point 2.65 >>> x = np.array([[0.5, 2.0], ... [0.0, 4.5], ... [0.0, 3.0]]).T # 3 points at once >>> interpolator(x) array([ 4.1 , 1.8 , 1.45]) >>> from odl.discr.grid import sparse_meshgrid >>> mesh = sparse_meshgrid([0.0, 0.5, 1.0], [1.5, 3.5]) >>> interpolator(mesh) # 3x2 grid of points array([[ 0.85, 1.65], [ 3.7 , 5.3 ], [ 2.85, 3.65]])