as_scipy_functional¶
-
odl.operator.oputils.
as_scipy_functional
(func, return_gradient=False)[source]¶ Wrap
op
as a function operating on linear arrays.This is intended to be used with the scipy solvers.
- Parameters
- func
Functional
. A functional that should be wrapped
- return_gradientbool, optional
True
if the gradient of the functional should also be returned,False
otherwise.
- func
- Returns
- function
callable
The wrapped functional.
- gradient
callable
, optional The wrapped gradient. Only returned if
return_gradient
is true.
- function
Notes
If the data representation of
op
’s domain is of typeNumpyTensorSpace
, this incurs no significant overhead. If the space type isCudaFn
or some other nonlocal type, the overhead is significant.Examples
Wrap functional and solve simple problem (here toy problem
min_x ||x||^2
):>>> func = odl.solvers.L2NormSquared(odl.rn(3)) >>> scipy_func = odl.as_scipy_functional(func) >>> from scipy.optimize import minimize >>> result = minimize(scipy_func, x0=[0, 1, 0]) >>> np.allclose(result.x, [0, 0, 0]) True
The gradient (jacobian) can also be provided:
>>> func = odl.solvers.L2NormSquared(odl.rn(3)) >>> scipy_func, scipy_grad = odl.as_scipy_functional(func, True) >>> from scipy.optimize import minimize >>> result = minimize(scipy_func, x0=[0, 1, 0], jac=scipy_grad) >>> np.allclose(result.x, [0, 0, 0]) True