ProductSpaceElement.ufuncs¶
- property ProductSpaceElement.ufuncs¶
ProductSpaceUfuncs
, access to Numpy style ufuncs.These are always available if the underlying spaces are
TensorSpace
.See also
odl.util.ufuncs.TensorSpaceUfuncs
Base class for ufuncs in
TensorSpace
spaces, subspaces may override this for greater efficiency.odl.util.ufuncs.ProductSpaceUfuncs
For a list of available ufuncs.
Examples
>>> r22 = odl.ProductSpace(odl.rn(2), 2) >>> x = r22.element([[1, -2], [-3, 4]]) >>> x.ufuncs.absolute() ProductSpace(rn(2), 2).element([ [ 1., 2.], [ 3., 4.] ])
These functions can also be used with non-vector arguments and support broadcasting, per component and even recursively:
>>> x.ufuncs.add([1, 2]) ProductSpace(rn(2), 2).element([ [ 2., 0.], [-2., 6.] ]) >>> x.ufuncs.subtract(1) ProductSpace(rn(2), 2).element([ [ 0., -3.], [-4., 3.] ])
There is also support for various reductions (sum, prod, min, max):
>>> x.ufuncs.sum() 0.0
Writing to
out
is also supported:>>> y = r22.element() >>> result = x.ufuncs.absolute(out=y) >>> result ProductSpace(rn(2), 2).element([ [ 1., 2.], [ 3., 4.] ]) >>> result is y True