NumpyTensor.__setitem__¶
- NumpyTensor.__setitem__(indices, values)[source]¶
Implement
self[indices] = values
.- Parameters:
- indicesindex expression
Integer, slice or sequence of these, defining the positions of the data array which should be written to.
- valuesscalar, array-like or
NumpyTensor
The value(s) that are to be assigned.
If
index
is an integer,value
must be a scalar.If
index
is a slice or a sequence of slices,value
must be broadcastable to the shape of the slice.
Examples
For 1d spaces, entries can be set with scalars or sequences of correct shape:
>>> space = odl.rn(3) >>> x = space.element([1, 2, 3]) >>> x[0] = -1 >>> x[1:] = (0, 1) >>> x rn(3).element([-1., 0., 1.])
It is also possible to use tensors of other spaces for casting and assignment:
>>> space = odl.rn((2, 3)) >>> x = space.element([[1, 2, 3], ... [4, 5, 6]]) >>> x[0, 1] = -1 >>> x rn((2, 3)).element( [[ 1., -1., 3.], [ 4., 5., 6.]] ) >>> short_space = odl.tensor_space((2, 2), dtype='short') >>> y = short_space.element([[-1, 2], ... [0, 0]]) >>> x[:, :2] = y >>> x rn((2, 3)).element( [[-1., 2., 3.], [ 0., 0., 6.]] )
The Numpy assignment and broadcasting rules apply:
>>> x[:] = np.array([[0, 0, 0], ... [1, 1, 1]]) >>> x rn((2, 3)).element( [[ 0., 0., 0.], [ 1., 1., 1.]] ) >>> x[:, 1:] = [7, 8] >>> x rn((2, 3)).element( [[ 0., 7., 8.], [ 1., 7., 8.]] ) >>> x[:, ::2] = -2. >>> x rn((2, 3)).element( [[-2., 7., -2.], [-2., 7., -2.]] )