NumpyTensor.__getitem__¶
- NumpyTensor.__getitem__(indices)[source]¶
Return
self[indices]
.- Parameters:
- indicesindex expression
Integer, slice or sequence of these, defining the positions of the data array which should be accessed.
- Returns:
- values
NumpyTensorSpace.dtype
orNumpyTensor
The value(s) at the given indices. Note that the returned object is a writable view into the original tensor, except for the case when
indices
is a list.
- values
Examples
For one-dimensional spaces, indexing is as in linear arrays:
>>> space = odl.rn(3) >>> x = space.element([1, 2, 3]) >>> x[0] 1.0 >>> x[1:] rn(2).element([ 2., 3.])
In higher dimensions, the i-th index expression accesses the i-th axis:
>>> space = odl.rn((2, 3)) >>> x = space.element([[1, 2, 3], ... [4, 5, 6]]) >>> x[0, 1] 2.0 >>> x[:, 1:] rn((2, 2)).element( [[ 2., 3.], [ 5., 6.]] )
Slices can be assigned to, except if lists are used for indexing:
>>> y = x[:, ::2] # view into x >>> y[:] = -9 >>> x rn((2, 3)).element( [[-9., 2., -9.], [-9., 5., -9.]] ) >>> y = x[[0, 1], [1, 2]] # not a view, won't modify x >>> y rn(2).element([ 2., -9.]) >>> y[:] = 0 >>> x rn((2, 3)).element( [[-9., 2., -9.], [-9., 5., -9.]] )