GroupL1Norm.gradient¶
- property GroupL1Norm.gradient¶
Gradient operator of the functional.
The functional is not differentiable in
x=0. However, when evaluating the gradient operator in this point it will return 0.Notes
The gradient is given by
![\left[ \nabla \| \|f\|_1 \|_1 \right]_i =
\frac{f_i}{|f_i|}](../_images/math/21783985af0711ebc34f82c65c6dc44c0e214355.png)
![\left[ \nabla \| \|f\|_2 \|_1 \right]_i =
\frac{f_i}{\|f\|_2}](../_images/math/62a35693aefe58d8e1826459079159e19923c8f5.png)
else:
![\left[ \nabla || ||f||_p ||_1 \right]_i =
\frac{| f_i |^{p-2} f_i}{||f||_p^{p-1}}](../_images/math/d1fc29c9c3c658c4c0c0079b46e60b72ca09bafe.png)