.. _linear_spaces: ############# Linear Spaces ############# Definition and basic properties ------------------------------- A linear space over a `field`_ :math:`\mathbb{F}` is a set :math:`\mathcal{X}`, endorsed with the operations of `vector addition`_ ":math:`+`" and `scalar multiplication`_ ":math:`\cdot`" which are required to fullfill certain properties, usually called axioms. To emphasize the importance of all ingredients, vector spaces are often written as tuples :math:`(\mathcal{X}, \mathbb{F}, +, \cdot)`. We always assume that :math:`\mathbb{F} = \mathbb{R}` or :math:`\mathbb{C}`. In the following, we list the axioms, which are required to hold for arbitrary :math:`x, y, z \in \mathcal{X}` and :math:`a, b \in \mathbb{F}`. +--------------------------------+--------------------------------------------------------------+ |Associativity of addition |:math:`(x + y) + z = (x + y) + z` | +--------------------------------+--------------------------------------------------------------+ |Commutativity of addition |:math:`x + y = y + x` | +--------------------------------+--------------------------------------------------------------+ |Existence of a neutral element |:math:`0 + x = x + 0 = x` | |of addition | | +--------------------------------+--------------------------------------------------------------+ |Existence of inverse elements |:math:`\forall x\ \exists \bar x: \bar x + x = x + \bar x = 0`| |of addition | | +--------------------------------+--------------------------------------------------------------+ |Compatibility of multiplications|:math:`a \cdot (b \cdot x) = (ab) \cdot x` | +--------------------------------+--------------------------------------------------------------+ |Neutral scalar is the neutral |:math:`1 \cdot x = x` | |element of scalar multiplication| | +--------------------------------+--------------------------------------------------------------+ |Distributivity with respect to |:math:`a \cdot (x + y) = a \cdot x + a \cdot y` | |vector addition | | +--------------------------------+--------------------------------------------------------------+ |Distributivity with respect to |:math:`(a + b) \cdot x = a \cdot x + b \cdot x` | |scalar addition | | +--------------------------------+--------------------------------------------------------------+ Of course, the inverse element :math:`\bar x` is usually denoted with :math:`-x`. Metric spaces ------------- The vector space :math:`(\mathcal{X}, \mathbb{F}, +, \cdot)` is called a `metric space`_ if it is additionally endorsed with a *distance* function or *metric* .. math:: d: \mathcal{X} \times \mathcal{X} \to [0, \infty) with the following properties for all :math:`x, y, z \in \mathcal{X}`: .. math:: :nowrap: \begin{align*} & d(x, y) = 0 \quad \Leftrightarrow \quad x = y && \text{(identity of indiscernibles)} \\ & d(x, y) = d(y, x) && \text{(symmetry)} \\ & d(x, y) \leq d(x, z) + d(z, y) && \text{(subadditivity)} \end{align*} We call the tuple :math:`(\mathcal{X}, \mathbb{F}, +, \cdot, d)` a `Metric space`_. Normed spaces ------------- A function on :math:`\mathcal{X}` intended to measure lengths of vectors is called a `norm`_ .. math:: \lVert \cdot \rVert : \mathcal{X} \to [0, \infty) if it fulfills the following conditions for all :math:`x, y \in \mathcal{X}` and :math:`a \in \mathbb{F}`: .. math:: :nowrap: \begin{align*} & \lVert x \rVert = 0 \Leftrightarrow x = 0 && \text{(positive definiteness)} \\ & \lVert a \cdot x \rVert = \lvert a \rvert\, \lVert x \rVert && \text{(positive homegeneity)} \\ & \lVert x + y \rVert \leq \lVert x \rVert + \lVert x \rVert && \text{(triangle inequality)} \end{align*} A tuple :math:`(\mathcal{X}, \mathbb{F}, +, \cdot, \lVert \cdot \rVert)` fulfilling these conditions is called `Normed vector space`_. Note that a norm induces a natural metric via :math:`d(x, y) = \lVert x - y \rVert`. Inner product spaces -------------------- Measure angles and defining notions like orthogonality requires the existence of an `inner product`_ .. math:: \langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to \mathbb{F} with the following properties for all :math:`x, y, z \in \mathcal{X}` and :math:`a \in \mathbb{F}`: .. math:: :nowrap: \begin{align*} & \langle x, x \rangle \geq 0 \quad \text{and} \quad \langle x, x \rangle = 0 \Leftrightarrow x = 0 && \text{(positive definiteness)} \\ & \langle a \cdot x + y, z \rangle = a \, \langle x, z \rangle + a \, \langle y, z \rangle && \text{(linearity in the first argument)} \\ & \langle x, y \rangle = \overline{\langle x, y \rangle} && \text{(conjugate symmetry)} \end{align*} The tuple :math:`(\mathcal{X}, \mathbb{F}, +, \cdot, \langle \cdot \rangle)` is then called an `Inner product space`_. Note that the inner product induces the norm :math:`\lVert x \rVert = \sqrt{\langle x, x \rangle}`. Cartesian spaces ---------------- We refer to the space :math:`\mathbb{F}^n` as the :math:`n`-dimensional `Cartesian space`_ over the field :math:`\mathbb{F}`. We choose this notion since Euclidean spaces are usually associated with the `Euclidean norm and distance`_, which are just (important) special cases. Vector addition and scalar multiplication in :math:`\mathbb{F}^n` are, of course, realized with entry-wise addition and scalar multiplication. The natural inner product in :math:`\mathbb{F}^n` is defined as .. math:: \langle x, y \rangle_{\mathbb{F}^n} := \sum_{i=1}^n x_i\, \overline{y_i} and reduces to the well-known `dot product`_ if :math:`\mathbb{F} = \mathbb{R}`. For the norm, the most common choices are from the family of `p-norms`_ .. math:: \lVert x \rVert_p &:= \left( \sum_{i=1}^n \lvert x_i \rvert^p \right)^{\frac{1}{p}} \quad \text{if } p \in [1, \infty) \\[1ex] \lVert x \rVert_\infty &:= \max\big\{\lvert x_i \rvert\,|\, i \in \{1, \dots, n\} \big\} with the standard Euclidan norm for :math:`p = 2`. As metric, one usually takes the norm-induced distance function, although other choices are possible. Weighted Cartesian spaces ------------------------- In the standard definition of inner products, norms and distances, all components of a vector are have the same weight. This can be changed by using weighted versions of those functions as described in the following. Let :math:`A \in \mathbb{F}^{n \times n}` be a `Hermitian`_ square and `positive definite`_ matrix, in short :math:`A = A^* \succeq 0`. Then, a weighted inner product is defined by .. math:: \langle x, y \rangle_A := \langle Ax, y \rangle_{\mathbb{F}^n}. Weighted norms can be defined in different ways. For a general norm :math:`\lVert \cdot \rVert`, a weighted version is given by .. math:: \lVert x \rVert_A := \lVert Ax \rVert For the :math:`p`-norms with :math:`p < \infty`, the definition is usually changed to .. math:: \lVert x \rVert_{p, A} := \lVert A^{1/p} x \rVert, where :math:`A^{1/p}` is the :math:`p`-th `root of the matrix`_ :math:`A`. The reason for this definition is that for :math:`p = 2`, this version is consistent with the inner product since :math:`\langle Ax, x \rangle = \langle A^{1/2} x, A^{1/2} x \rangle = \lVert A^{1/2} x \rVert^2`. Remark on matrices as operators ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A matrix :math:`M \in \mathbb{F}^{m \times n}` can be regarded as a `linear operator`_ .. math:: \mathcal{M} &: \mathbb{F}^n \to \mathbb{F}^m \\ \mathcal{M}(x) &:= M x It is well known that in the standard case of a Euclidean space, the adjoint operator is simply defined with the conjugate transposed matrix: .. math:: \mathcal{M}^* &: \mathbb{F}^m \to \mathbb{F}^n \\ \mathcal{M}^*(y) &:= M^* y However if the spaces :math:`\mathbb{F}^n` and :math:`\mathbb{F}^m` have weighted inner products, this identification is no longer valid. If :math:`\mathbb{F}^{n \times n} \ni A = A^* \succeq 0` and :math:`\mathbb{F}^{m \times m} \ni B = B^* \succeq 0` are the weighting matrices of the inner products, we get .. math:: \langle \mathcal{M}(x), y \rangle_B &= \langle B\mathcal{M}(x), y \rangle_{\mathbb{F}^m} = \langle M x, B y \rangle_{\mathbb{F}^m} = \langle x, M^* B y \rangle_{\mathbb{F}^n} \\ &= \langle A^{-1} A x, M^* B y \rangle_{\mathbb{F}^n} = \langle A x, A^{-1} M^* B y \rangle_{\mathbb{F}^n} \\ &= \langle x, A^{-1} M^* B y \rangle_A Thus, the adjoint of the matrix operator between the weighted spaces is rather given as :math:`\mathcal{M}^*(y) = A^{-1} M^* B y`. Useful Wikipedia articles ------------------------- - `Vector space`_ - `Metric space`_ - `Normed vector space`_ - `Inner product space`_ - `Euclidean space`_ .. _Cartesian space: https://en.wikipedia.org/wiki/Cartesian_coordinate_system .. _dot product: https://en.wikipedia.org/wiki/Dot_product .. _Euclidean norm and distance: https://en.wikipedia.org/wiki/Euclidean_distance .. _Euclidean space: https://en.wikipedia.org/wiki/Euclidean_space .. _field: https://en.wikipedia.org/wiki/Field_%28mathematics%29 .. _Hermitian: https://en.wikipedia.org/wiki/Hermitian_matrix .. _inner product: https://en.wikipedia.org/wiki/Inner_product_space .. _Inner product space: https://en.wikipedia.org/wiki/Inner_product_space .. _linear operator: https://en.wikipedia.org/wiki/Linear_map .. _metric space: https://en.wikipedia.org/wiki/Metric_space .. _Metric space: https://en.wikipedia.org/wiki/Metric_space .. _norm: https://en.wikipedia.org/wiki/Normed_vector_space .. _Normed vector space: https://en.wikipedia.org/wiki/Normed_vector_space .. _p-norms: https://en.wikipedia.org/wiki/Lp_space#The_p-norm_in_finite_dimensions .. _positive definite: https://en.wikipedia.org/wiki/Positive-definite_matrix .. _root of the matrix: https://en.wikipedia.org/wiki/Matrix_function .. _scalar multiplication: https://en.wikipedia.org/wiki/Scalar_multiplication .. _vector addition: https://en.wikipedia.org/wiki/Euclidean_vector#Addition_and_subtraction .. _Vector space: https://en.wikipedia.org/wiki/Vector_space