axis_rotation¶
-
odl.tomo.util.utility.
axis_rotation
(axis, angle, vectors, axis_shift=(0, 0, 0))[source]¶ Rotate a vector or an array of vectors around an axis in 3d.
The rotation is computed by Rodrigues’ rotation formula.
- Parameters
- axis
array-like
, shape(3,)
Rotation axis, assumed to be a unit vector.
- anglefloat
Angle of the counter-clockwise rotation.
- vectors
array-like
, shape(3,)
or(N, 3)
The vector(s) to be rotated.
- axis_shift
array_like
, shape(3,)
, optional Shift the rotation center by this vector. Note that only shifts perpendicular to
axis
matter.
- axis
- Returns
- rot_vec
numpy.ndarray
The rotated vector(s).
- rot_vec
References
Examples
Rotating around the third coordinate axis by and angle of 90 degrees:
>>> axis = (0, 0, 1) >>> rot1 = axis_rotation(axis, angle=np.pi / 2, vectors=(1, 0, 0)) >>> np.allclose(rot1, (0, 1, 0)) True >>> rot2 = axis_rotation(axis, angle=np.pi / 2, vectors=(0, 1, 0)) >>> np.allclose(rot2, (-1, 0, 0)) True
The rotation can be performed with shifted rotation center. A shift along the axis does not matter:
>>> rot3 = axis_rotation(axis, angle=np.pi / 2, vectors=(1, 0, 0), ... axis_shift=(0, 0, 2)) >>> np.allclose(rot3, (0, 1, 0)) True
The distance between the rotation center and the vector to be rotated determines the radius of the rotation circle:
>>> # Rotation center in the point to be rotated, should do nothing >>> rot4 = axis_rotation(axis, angle=np.pi / 2, vectors=(1, 0, 0), ... axis_shift=(1, 0, 0)) >>> np.allclose(rot4, (1, 0, 0)) True >>> # Distance 2, thus rotates to (0, 2, 0) in the shifted system, >>> # resulting in (-1, 2, 0) from shifting back after rotating >>> rot5 = axis_rotation(axis, angle=np.pi / 2, vectors=(1, 0, 0), ... axis_shift=(-1, 0, 0)) >>> np.allclose(rot5, (-1, 2, 0)) True
Rotation of multiple vectors can be done in bulk:
>>> vectors = [[1, 0, 0], [0, 1, 0]] >>> rot = axis_rotation(axis, angle=np.pi / 2, vectors=vectors) >>> np.allclose(rot[0], (0, 1, 0)) True >>> np.allclose(rot[1], (-1, 0, 0)) True