proximal_box_constraint¶
- odl.solvers.nonsmooth.proximal_operators.proximal_box_constraint(space, lower=None, upper=None)[source]¶
Proximal operator factory for
G(x) = ind(a <= x <= b).If P is the set of elements with a <= x <= b, the indicator function of which is defined as:
ind(a <= x <= b) = {0 if x in P, infinity if x is not in P}
with x being an element in
space.- Parameters:
- space
LinearSpace Domain of the functional G(x)
- lower
space.fieldelement orspaceelement-like, optional The lower bound. Default:
None, interpreted as -infinity- upper
space.fieldelement orspaceelement-like, optional The upper bound. Default:
None, interpreted as +infinity
- space
- Returns:
- prox_factoryfunction
Factory for the proximal operator to be initialized
See also
proximal_nonnegativitySpecial case with
lower=0, upper=infty
Notes
If
is an interval
, the indicator function is
defined as
For a step size
, the proximal operator of
is given by the projection onto the interval![\mathrm{prox}_{\sigma I_{P}}(x) = \begin{cases}
a & \text{if } x < a, \\
x & \text{if } x \in [a,b], \\
b & \text{if } x > b.
\end{cases}](../_images/math/cf514816192dc7f82beb8e2e494ac6810c57db87.png)
The proximal operator is independent of
and invariant under
a positive rescaling of
, since that leaves the indicator
function unchanged.For spaces of the form
, the definition extends naturally
in each component.