FunctionalQuotient¶
-
class
odl.solvers.functional.functional.
FunctionalQuotient
(*args, **kwargs)[source]¶ Bases:
odl.solvers.functional.functional.Functional
Quotient
p(x) = f(x) / g(x)
of two functionalsf
andg
.- Attributes
adjoint
Adjoint of this operator (abstract).
convex_conj
Convex conjugate functional of the functional.
dividend
The dividend of the quotient.
divisor
The divisor of the quotient.
domain
Set of objects on which this operator can be evaluated.
grad_lipschitz
Lipschitz constant for the gradient of the functional.
gradient
Gradient operator of the functional.
inverse
Return the operator inverse.
is_functional
True
if this operator’s range is aField
.is_linear
True
if this operator is linear.proximal
Proximal factory of the functional.
range
Set in which the result of an evaluation of this operator lies.
Methods
_call
(self, x)Apply the functional to the given point.
bregman
(self, point, subgrad)Return the Bregman distance functional.
derivative
(self, point)Return the derivative operator in the given point.
norm
(self[, estimate])Return the operator norm of this operator.
translated
(self, shift)Return a translation of the functional.
-
__init__
(self, dividend, divisor)[source]¶ Initialize a new instance.
- Parameters
- dividend, divisor
Functional
Functionals in the quotient. Need to have matching domains.
- dividend, divisor
Examples
Construct the functional || . ||_2 / 5
>>> space = odl.rn(2) >>> func1 = odl.solvers.L2Norm(space) >>> func2 = odl.solvers.ConstantFunctional(space, 5) >>> prod = odl.solvers.FunctionalQuotient(func1, func2) >>> prod([3, 4]) # expect sqrt(3**2 + 4**2) / 5 = 1 1.0