IndicatorLpUnitBall.convex_conj¶
-
property
IndicatorLpUnitBall.
convex_conj
¶ The conjugate functional of IndicatorLpUnitBall.
The convex conjugate functional of an
Lp
norm,p < infty
is the indicator function on the unit ball defined by the corresponding dual normq
, given by1/p + 1/q = 1
and whereq = infty
ifp = 1
[Roc1970]. By the Fenchel-Moreau theorem, the convex conjugate functional of indicator function on the unit ball inLq
is the corresponding Lp-norm [BC2011].References
[Roc1970] Rockafellar, R. T. Convex analysis. Princeton University Press, 1970.
[BC2011] Bauschke, H H, and Combettes, P L. Convex analysis and monotone operator theory in Hilbert spaces. Springer, 2011.