IntervalProd

class odl.set.domain.IntervalProd(min_pt, max_pt)[source]

Bases: odl.set.sets.Set

An n-dimensional rectangular box.

An interval product is a Cartesian product of n intervals, i.e. an n-dimensional rectangular box aligned with the coordinate axes as a subset of the n-dimensional Euclidean space.

IntervalProd objects are immutable, hence all manipulation methods return a new instance.

Attributes
area

Area of this rectangle (valid if ndim == 2).

examples

Generator creating name-value pairs of set elements.

extent

Return the vector of interval lengths per axis.

length

Length of this interval (valid for ndim == 1).

max_pt

Right interval boundaries of this interval product.

mid_pt

Midpoint of this interval product.

min_pt

Left interval boundaries of this interval product.

ndim

Number of intervals in the product.

nondegen_byaxis

Boolean array with True entries for non-degenerate axes.

true_ndim

Number of non-degenerate (positive-length) intervals.

volume

ndim-dimensional volume of this interval product.

Methods

append(self, \*intvs)

Insert intvs at the end as a block.

approx_contains(self, point, atol)

Return True if point is “almost” contained in this set.

approx_equals(self, other, atol)

Return True if other is equal to this set up to atol.

collapse(self, indices, values)

Partly collapse the interval product to single values.

contains_all(self, other[, atol])

Return True if all points defined by other are contained.

contains_set(self, other[, atol])

Return True if other is (almost) contained in this set.

corners(self[, order])

Return the corner points as a single array.

dist(self, point[, exponent])

Return the distance of point to this set.

element(self[, inp])

Return an element of this interval product.

insert(self, index, \*intvs)

Return a copy with intvs inserted before index.

max(self)

Return the maximum point of this interval product.

measure(self[, ndim])

Return the Lebesgue measure of this interval product.

min(self)

Return the minimum point of this interval product.

squeeze(self)

Remove the degenerate dimensions.

__init__(self, min_pt, max_pt)[source]

Initialize a new instance.

Parameters
min_pt, max_ptfloat or array-like

Vectors of lower/upper ends of the intervals in the product.

Examples

>>> min_pt, max_pt = [-1, 2.5, 70], [-0.5, 10, 75]
>>> rbox = odl.IntervalProd(min_pt, max_pt)
>>> rbox
IntervalProd([ -1. ,   2.5,  70. ], [ -0.5,  10. ,  75. ])